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– Basic shower parameters and g-hadron separation MVA 
parameters

– Differential sensitivity
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Current IACT systems and CTA (array scale)
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• Current IACT arrays (H.E.S.S., VERITAS, MAGIC):  coverage of  0.03 km2

• CTA :      4 km2 for South site (99 telescopes)
 0.6 km2 for North site (19 telescopes)

→ Full containment of Cherenkov photons from g-ray and proton showers

Array configuration (South site), public at
https://www.cta-observatory.org/science/cta-performance/ Array scale and Cherenkov light-pool size



g-ray sensitivity of  CTA 
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Ng≥10

Ns≥5*1

Ng/NBG

≥0.05

• g-ray sensitivity of an IACT system is mostly determined  by 
• Significance of signal events to the background fluctuation (≥5s) 
• Signal-to-background ratio (≥5%)

“Background”
≈ CR proton

+ electron

CTA Instrument Response Functions (IRFs), public at
https://www.cta-observatory.org/science/cta-performance/

*1 Significance def. in 
Li & Ma (1983), Eq. (17)

Differential Sensitivity of CTA South array

z = 20deg, 50h obs.

Background rate

g-ray effective area

Signal event 
statistics

Significance to 
BG fluctuation

S/B ratio



Estimation of background level in IACT systems

• Current IACT systems 

– Real cosmic-ray data (“OFF-source” data) are used as background samples

– Real OFF-source data are used in both of training of machine learning for 
g-hadron separation and estimation of residual background

• CTA (and systems in design/construction phase)

– Monte Carlo (MC) simulation data are used for background estimation

– Usually cosmic-ray protons and electrons are simulated as backgrounds

– As for proton: currently interaction between cosmic-ray proton and nuclei 
in very-high-energy region is not perfectly understood  

• several hadronic interaction models (QSGJET, EPOS, SIBYLL…) are in 
use in VHE/UHE CR field

• Improvement of models with feedback from collider and CR 
experiments is ongoing
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Hadronic shower and IACT observation

• IACT array detects Cherenkov photons from      
sub-EM showers (primarily from p0)  and muons 
contained in a hadronic shower

• Energy spectra and angular distribution of 
secondary particles are different from model to 
model

• Related studies in IACT field :

– Cherenkov photon density  (Parsons+ 2011)

– Muon flux on the ground (Mitchell+ 2019)  

– Nature of g-ray-like proton events (sub-EM 
showers mimic gamma-ray showers)                              
(Maier+ 2007, Sitarek+ 2017)

• Discrimination ability of model difference  
depends on the array performance - this study is 
focused on CTA, testing QGSJET-II-03 (currently 
used in CTA) and recent post-LHC models
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Difference of models in shower particles
- p0 spectrum -
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p0 spectra, Ep=1 TeV (mono)

• Air shower simulation with CORSIKA to  
investigate difference of secondary 
particles between different models

• Used models: 
- QGSJET-II-03 in CORSIKA6.99

(currently used in CTA)
- QGSJET-II-04, EPOS-LHC, 

SIBYLL2.3c in CORSIKA7.69 
- E<80 GeV: fixed low energy model 

UrQMD (for all cases)
• p0 spectrum

- Spectrum at high energy end can 
affect the rate of g-ray-like events

- Harder spectrum tends to give 
more g-ray-like BG events:

EPOS → SIBYLL
→ QGSJET-II-03  QGSJET-II-04

primary 
proton 
energy

10% of
primary 
energy



Difference of models in shower particles
- Energy fraction in EM components -
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• Energy fraction carried by g +e-+e+ (EM components) after the 3rd interaction               
(as for g-ray primary case, this fraction is close to 100%)

• Similar pattern as p0 spectrum is seen; relation between model changes at 1 TeV
• Energy fraction in EM which will be regarded as “g-ray-like” event depends on the array 

performance  -- 80% was used in this study for CTA

EEM/Eprimary distribution, Ep=1 TeV case Prob. of high EM fraction events VS true E 

correlate with g-ray-like event rate
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CTA simulation
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Array configuration, South Site
Site Paranal (Chile)

Array 4 LSTs, 25 MSTs, 70 SSTs
(configuration shown left)

Particle Gamma, e-, 
proton: QGSJET-II-03 *1

proton :QGSJET-II-04
EPOS-LHC v3.4 /SIBYLL2.3c*2

Low Energy Model (E<80 GeV) 
:  fixed as UrQMD

Core range 2500 m

Viewcone 0 - 10 deg

Energy
range

0.003 - 330 TeV (e-, gamma）
0.004  - 600 TeV (proton)

Spec. index -2.0 *3

*3 Reweighted in the analysis 

*1 in CORSIKA 6.99, produced on GRID system in EU
*2 in CORSIKA 7.69, produced on cluster in Japan

N

Analysis tool: EventDisplay v500-rc04 



Energy scale and shower rate

9

Erec VS Etrue CR proton shower rate (relative)

5% 10%

• Difference in p0 production can lead to difference in E scale and CR proton rate
• 5% difference in reconstructed energy and 10% difference in CR proton rate 

between models (before gamma-ray selection cuts)

(E is reconstructed 
assuming g-ray )



Difference in basic shower parameter distribution
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• Most important shower characteristics for g-
hadron separation  : WIDTH (lateral size of the 
shower)

• MSCW : corrected and normalized WIDTH 
• Difference between models is seen at small 

MSCW (g-ray-like region)

“Longitudinal size 
of the shower”

“Lateral size of 
the shower”

“Height of shower 
maximum”

p
re

cu
t 

lin
e Proton histograms 

are normalized by 
number of 
simulated events

1 TeV<Erec<10 TeV



MVA parameters for g-hadron separation
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• Multivariate analysis (MVA) to introduce a single index of “gammaness” (or hadroness)
- Boosted Decision Tree is used here, with precuts in basic shower parameters

• EPOS and SIBYLL show worse separation, with more g-like events than QGS as expected

MVA parameter distribution
1.0 TeV <Erec< 5.6 TeV

BDT 
trained for each model

𝑸𝑪𝜸/ 𝑪𝒑 VS BDT cut value

Good 
separation

Bad
separation

Cg: cut 
acceptance for g

EPOS

SIBYLL

QGS

Histograms are normalized by 
the area (num. of accepted 
events)



Differential  sensitivity
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South site,  LST+MST+SST array, z=20deg, average of North+South pointing 

+100%+30%50h case

Differential sensitivity Background rate(p+e-)

50h case



Differential  sensitivity
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South site,  LST+MST+SST array, z=20deg, average of North+South pointing 

+100%+30%50h case

Differential sensitivity Background rate(p+e-)

50h case
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In the viewpoint of model verification with IACTs
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+100%

MVA parameter distribution (1 TeV < Erec < 10 TeV)
• Once we have real CR data, 

we can test which model is  
the closest to the reality by 
comparing MC and real data :
- Event rate
- Shower param. dist.
- g-hadron separation 

parameter dist. 
(relatively large factor 2
difference)

• Current IACT systems can 
also contribute to model 
verification, though model 
discrimination ability depends 
on the array performance 
(worse than CTA).

identical trained BDT (QGSJETII-03) is used for all models 

Contribution from e- is considered

g-likep-like



Model verification: contribution from heavy nuclei?
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MVA parameter distribution (1 TeV < Erec < 10 TeV)

g-likep-like

He/p ratio

He flux is assumed to be same level as 

proton (as an extremity)

Helium

• Uncertainty in CR composition can 
affect the model verification accuracy

• As far as treating  g-ray-like events, 
contribution from heavy nuclei  is 
negligibly small 
→ good verification measure

• Helium and heavier nuclei do not 
mimic g-rays because of their lateral 
size and shower maximum height
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p He He

p

Lateral size of shower Height of shower max.

(EPOS)

Histograms 
normalized by the 
area



Summary

• Effect of difference in hadronic interaction models on gamma-ray sensitivity of 
CTA south array (99tels, 4-LSTs + 25-MSTs + 70-SSTs) was estimated with MC 
simulation data

• Tried models: 
- QGSJET-II-03 in CORSIKA6.99 (currently used for CTA IRF)
- QGSJET-II-04, EPOS-LHC, SIBYLL2.3c in CORSIKA7.69 (post-LHC models)

• 5% level difference in energy scale and 10% level difference in proton shower 
rate were seen.

• As a preliminary result, difference in g-ray sensitivity between models was 
estimated to be 30% level (with 10% statistical error from MC data);   Relation 
between models is consistent with p0 spectrum and EM fraction

• In the viewpoint of model verification, g-ray-like event rate is a relatively good 
measure :

– almost free from uncertainty of cosmic-ray nuclei composition

– relatively large (factor 2) difference between models

• Current IACT systems can also contribute to model testing (discrimination ability 
depends on the array performance )

16



Backup slides
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Differential sensitivity – subsystems -
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LST only MST only SST only

50h case 50h case 50h case



CR spectra used in the background calculation

• CR proton

𝑑𝑁

𝑑𝐸
= 𝐼0

𝐸

𝐸𝐶

−Γ

𝐼0 = 9.8 × 10−6 cm−2 s−1 TeV−1 str−1,  𝐸𝐶 = 1.0 TeV, Γ = 2.62

• CR electron

𝐸3 𝑑𝑁

𝑑𝐸
= 𝐼0

𝐸

𝐸𝐶

−Γ
× (1 + 𝑓 × (exp(exp(−

(log10(𝐸/𝐸𝐶 )−𝜇)2

2𝜎2
))-1))

𝐼0= 2.385 × 10−9 cm−2 s−1 TeV−1 str−1,  𝐸𝐶 = 1.0 TeV,
Γ = 3.43, 𝜇 = −0.101 , 𝜎 = 0.741, 𝑓 = 1.950
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High EM fraction event prob. VS trueE
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EM frac>70% prob. EM frac>60% prob. 


