

Influence of uncertainty in hadronic interaction models on the sensitivity estimation of Cherenkov Telescope Array

Michiko Ohishi, L. Arbeletche^a, V. de Souza^a, G. Maier^b, K. Bernlöhr^c, A. Moralejo^d, J. Bregeon^e, L. Arrabito^e, T. Yoshikoshi for the CTA Consortium

ICRR, Univ. of Tokyo, Universidade de São Pauloa, DESYb, MPIKc, IFAEd, LUPM, Université de Montpellier, CNRS/IN2P3e

This work was conducted in the context of CTA Analysis and Simulation Working Group.

Outline

- Introduction γ -ray sensitivity of CTA and cosmic-ray backgrounds
- Difference of hadronic interaction models in shower particles
 - $-\pi^0$ spectrum
 - energy fraction consumed in electromagnetic (EM) components
- CTA simulation and analysis
 - Energy scale and shower rate of cosmic-ray proton
 - Basic shower parameters and γ-hadron separation MVA parameters
 - Differential sensitivity
- In the viewpoint of model verification
 - Difference in γ -ray-like event rate
 - Contribution from heavy nuclei
- Summary

Current IACT systems and CTA (array scale)

- **Current IACT arrays** (H.E.S.S., VERITAS, MAGIC): coverage of ~0.03 km²
- ~ 4 km² for South site (99 telescopes)
 - ~ 0.6 km² for North site (19 telescopes)
 - \rightarrow Full containment of Cherenkov photons from γ -ray and proton showers

1500

1000

500

Array configuration (South site), public at https://www.cta-observatory.org/science/cta-performance/

proton 3.0 TeV

γ -ray sensitivity of CTA

- γ -ray sensitivity of an IACT system is mostly determined by
 - Significance of signal events to the background fluctuation ($\geq 5\sigma$)
 - Signal-to-background ratio (≥5%)

γ-ray effective area effective area [mf] 10 10³ 1.5 -1 -0.5 0 0.5 1 1.5 2 log, (E/TeV) **Background rate** Stackground rate [1/s "Background" ≈ CR proton 10⁻⁵ + electron 10⁻€ log (E/TeV)

CTA Instrument Response Functions (IRFs), public at https://www.cta-observatory.org/science/cta-performance/

*1 Significance def. in Li & Ma (1983), Eq. (17)

Estimation of background level in IACT systems

Current IACT systems

- Real cosmic-ray data ("OFF-source" data) are used as background samples
- Real OFF-source data are used in both of training of machine learning for γ -hadron separation and estimation of residual background
- CTA (and systems in design/construction phase)
 - Monte Carlo (MC) simulation data are used for background estimation
 - Usually cosmic-ray protons and electrons are simulated as backgrounds
 - As for **proton**: currently interaction between cosmic-ray proton and nuclei in very-high-energy region is not perfectly understood
 - several hadronic interaction models (QSGJET, EPOS, SIBYLL...) are in use in VHE/UHE CR field
 - Improvement of models with feedback from collider and CR experiments is ongoing

Hadronic shower and IACT observation

- IACT array detects Cherenkov photons from sub-EM showers (primarily from π^0) and muons contained in a hadronic shower
- Energy spectra and angular distribution of secondary particles are different from model to model
- Related studies in IACT field :
 - Cherenkov photon density (Parsons+ 2011)
 - Muon flux on the ground (Mitchell+ 2019)
 - Nature of γ-ray-like proton events (sub-EM showers mimic gamma-ray showers)
 (Maier+ 2007, Sitarek+ 2017)
- Discrimination ability of model difference depends on the array performance - this study is focused on CTA, testing QGSJET-II-03 (currently used in CTA) and recent post-LHC models

Difference of models in shower particles

- π^0 spectrum -

Air shower simulation with CORSIKA to investigate difference of secondary particles between different models

Used models:

- QGSJET-II-03 in CORSIKA6.99 (currently used in CTA)
- QGSJET-II-04, EPOS-LHC,
 SIBYLL2.3c in CORSIKA7.69
- E<80 GeV: fixed low energy model UrQMD (for all cases)

• π^0 spectrum

- Spectrum at high energy end can affect the rate of γ -ray-like events
- Harder spectrum tends to give more γ -ray-like BG events:

EPOS → **SIBYLL**

→ QGSJET-II-03 ≈ QGSJET-II-04

Difference of models in shower particles

- Energy fraction in EM components -

- Energy fraction carried by $\gamma + e^- + e^+$ (EM components) after the 3rd interaction (as for γ -ray primary case, this fraction is close to 100%)
- Similar pattern as π^0 spectrum is seen; relation between model changes at ~ 1 TeV
- Energy fraction in EM which will be regarded as " γ -ray-like" event depends on the array performance -- 80% was used in this study for CTA

Prob. of high EM fraction events VS true E

CTA simulation

Analysis tool: EventDisplay v500-rc04

Site	Paranal (Chile)
Array	4 LSTs, 25 MSTs, 70 SSTs (configuration shown left)
Particle	Gamma, e-, proton: QGSJET-II-03 *1 proton: QGSJET-II-04 EPOS-LHC v3.4 /SIBYLL2.3c*2 Low Energy Model (E<80 GeV) : fixed as UrQMD
Core range	2500 m
Viewcone	0 - 10 deg
Energy range	0.003 - 330 TeV (e-, gamma) 0.004 - 600 TeV (proton)
Spec. index	-2.0 * ³

^{*1} in CORSIKA 6.99, produced on GRID system in EU

^{*2} in CORSIKA 7.69, produced on cluster in Japan

^{*3} Reweighted in the analysis

Energy scale and shower rate

- Difference in π^0 production can lead to difference in E scale and CR proton rate
- ~5% difference in reconstructed energy and ~10% difference in CR proton rate between models (before gamma-ray selection cuts)

Difference in basic shower parameter distribution

10

EmissionHeight (km)

200

 Difference between models is seen at small MSCW (γ-ray-like region)

MSCW: corrected and normalized WIDTH

MVA parameters for γ -hadron separation

- Multivariate analysis (MVA) to introduce a single index of "gammaness" (or hadroness)
 - Boosted Decision Tree is used here, with precuts in basic shower parameters
- **EPOS** and **SIBYLL** show worse separation, with more γ -like events than QGS as expected

Differential sensitivity

South site, LST+MST+SST array, z=20deg, average of North+South pointing

Differential sensitivity

South site, LST+MST+SST array, z=20deg, average of North+South pointing

In the viewpoint of model verification with IACTs

identical trained BDT (QGSJETII-03) is used for all models

- Once we have real CR data, we can test which model is the closest to the reality by comparing MC and real data:
 - Event rate
 - Shower param. dist.
 - γ-hadron separation parameter dist.
 (relatively large factor ~2 difference)
- Current IACT systems can also contribute to model verification, though model discrimination ability depends on the array performance (worse than CTA).

Model verification: contribution from heavy nuclei?

MVA parameter distribution (1 TeV < E_{rec} < 10 TeV)

- Uncertainty in CR composition can affect the model verification accuracy
- As far as treating γ -ray-like events, contribution from heavy nuclei is negligibly small
 - → **good** verification **measure**
- Helium and heavier nuclei do not mimic γ-rays because of their lateral size and shower maximum height

Summary

- Effect of difference in hadronic interaction models on gamma-ray sensitivity of CTA south array (99tels, 4-LSTs + 25-MSTs + 70-SSTs) was estimated with MC simulation data
- Tried models:
 - **QGSJET-II-03** in CORSIKA6.99 (currently used for CTA IRF)
 - QGSJET-II-04, EPOS-LHC, SIBYLL2.3c in CORSIKA7.69 (post-LHC models)
- ~5% level difference in energy scale and ~10% level difference in proton shower rate were seen.
- As a preliminary result, difference in γ -ray sensitivity between models was estimated to be \sim 30% level (with \pm 10% statistical error from MC data); Relation between models is consistent with π^0 spectrum and EM fraction
- In the viewpoint of **model verification**, γ -ray-like event rate is a relatively good measure :
 - almost free from uncertainty of cosmic-ray nuclei composition
 - relatively large (factor ~2) difference between models
- Current IACT systems can also contribute to model testing (discrimination ability depends on the array performance)

Backup slides

Cta

Differential sensitivity – subsystems -

CR spectra used in the background calculation

CR proton

$$\frac{dN}{dE} = I_0 \left(\frac{E}{E_C}\right)^{-\Gamma}$$

$$I_0 = 9.8 \times 10^{-6} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1} \text{ str}^{-1}, E_C = 1.0 \text{ TeV}, \Gamma = 2.62$$

CR electron

$$E^{3} \frac{dN}{dE} = I_{0} \left(\frac{E}{E_{C}} \right)^{-\Gamma} \times (1 + f \times (\exp(\exp(-\frac{(\log_{10}(E/E_{C}) - \mu)^{2}}{2\sigma^{2}})) - 1))$$

$$I_0 = 2.385 \times 10^{-9} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1} \text{ str}^{-1}, E_C = 1.0 \text{ TeV},$$

 $\Gamma = 3.43, \quad \mu = -0.101, \sigma = 0.741, f = 1.950$

High EM fraction event prob. VS trueE

